Suregen-II in a nutshell

Every philosophy that fits in a nutshell…belongs there!

(Harris’ Law)

Some preliminary remarks: It is slightly odd to give an introduction into a NLG shell system which generates German text, and to do so in English. Its justification stems from the observation that virtually every native speaker of German with an interest in NLG can be counted on to read English (hopefully my crude English as well) rather fluently. Moreover, many, but by no means all, phenomena addressed by Suregen-II seem to be relevant in English medical documents as well. Therefore, I hope to do both sides justice instead of serving neither.

I would like to direct the reader with only little attention spare to the last section (an elaborated example) as I hope it illustrates best what Suregen-II is all about.

An important confession is still due: This introduction scratches only the surface of many NLG related problems and, even worse, does not address some of them (lexical choice, for instance, or the generation of referential expressions). This will be alleviated in the next version, I simply wanted to set a starting point here.

1. Overview

· ontology: SuregenConcept
· text generation knowledge: ToDescribe
· morphosyntacticals: from adverbial-phrase to verb-form
· SemanticFunctions: SuregenSemanticFunction
· Dictionary: AddDictEntry
· Enumerative expressions: Enumerate
· Aggregation: Aggregation
· text plan: Textplan
· An elaborated example: Suregen-ecce
2. Ontology

Building an application in SUREGEN-II necessarily entails the definition of the concepts of the domain and their relations. Setting aside the definitional complications of this term, we follow GRUBER („An ontology is a specification of a conceptualisation“) and call this “ontology”.

Suregen-II already has a base ontology of concepts for medical documents which can be built upon, but it is also possible to develop another ontology completely anew. The “built-in”-ontology covers among others:

(person

(patient

(relative

(physician

(inanimate physical object

(medical instrument

(event

(pt. encounter

(location

(location in body

(area

(area in body

(process

(intended process

(iatrogenic process

(iatrogenic action on object

(remove

(install

(destroy

(open

(close

(create

(measure

(state

(iatrogenic state

(disposition

(time point

(time interval

Please note that this ontology is not optimised for elegance. There is, for instance, no “physical object” common superclass to “person” and “inanimate physical object” simply because it has not proved necessary for generation purposes and simplicity had priority over elegance in the design of SUREGEN-II.

The means to define concepts (=classes) in SUREGEN-II is SuregenConcept, it takes as arguments the concept name, the direct superclass, concept attributes (=slots, if any) and – optionally – semantic markers (see below).

Examples:

(SuregenConcept Thing :is-a SuregenObject

 :has (colour height))

This defines, simply enough, Thing as a SuregenObject (the top class) with colour and height as attributes.

Attributes defined with :has are “visible” externally and can be modified at runtime via GUI/API. When defined using the :has-intern keyword attributes can be hidden and used/modified by SUREGEN-II procedures only:

(SuregenConcept P_PrepareMeal :is-a SuregenProcess

 :has-intern ((SP :are (P1_buyFood P2_cook P3_setTable))))

P_PrepareMeal is – somewhat outside the range of intended applications -defined as a SuregenProcess with an internal attribute named SP (= subprocesses). The :are keyword ensures that instances of the respective classes P1_buyFood, P2_cook and P3_setTable are generated for every new instance of P_PrepareMeal (provided that the classes exist at instantiation time).

3. text generation knowledge

Text generation in SUREGEN-II means that instances of classes describe themselves. For every class, therefore, it must be specified via ToDescribe how this is to be done. This macro accepts (in the simplest case) the class’ name and an arbitrary LISP expression, which is evaluated when an instance of the class is to be described. Thus

(ToDescribe :a Thing :use “A thing”)

is perfectly acceptable. A possible option to ToDescribe, signalled by :as, is the desired (syntactical) form of the description. So:

(ToDescribe :a Thing :as :NP :use “Ein Ding”)

(ToDescribe :a Thing :as :MC :use “Ein Ding existiert.”)

(„Ein Ding“ = „A thing“, „Ein Ding existiert.“= „A thing exists.“)

would return the respective strings when the forms :NP (=noun phrase) or :MC (=main clause) are desired. The parameters to :as are in now way limited (other than being LISP “atoms”).

The use of canned text as in the above examples can be useful in the early phases of system design and sometimes (in the case of phraseologisms) even in production version. The expressive power of SUREGEN-II however stems from more complicated expressions. These expressions can

· use morphosyntactical expressions

· refer to slot values

· employ of other objects’ descriptions

· use typical (semantic) constellations (see below).

Moreover, it is possible to specify not only the description of the entire instance, but merely of one of its “facet”s, signalled by the :the keyword.

Some more examples will illustrate this:

(ToDescribe :a Thing :as :NP

:use (noun-phrase :noun “Ding” :pronoun :neutral))

(ToDescribe :a Thing :as :MC

:use (main-clause

:subject (noun-phrase :noun “Ding” :pronoun :neutral)

:predicate “existieren”))
(„Ding“ = „thing“, „existieren.“= „to exist“)

are paraphrases of the above examples, now built “from scratch”.

These “syntacticized” formulations may be fleshed out:

(ToDescribe :a Thing :as :NP

:use (noun-phrase :noun “Ding”

:pronoun :neutral

:adjective (my :colour)))

(ToDescribe :a Thing :as :MC

:use (main-clause

:subject (noun-phrase
:noun “Ding”

:pronoun :neutral

:adjective (my :colour))

:predicate “existieren”))

(ToDescribe :a Thing :as :MC

:use (main-clause

:subject (noun-phrase
:noun “Ding”

:pronoun :definite

:adjective (my :colour))

:predicate “existieren”))

Now the description uses the function my to refer to the (user accessible) slot colour, giving descriptions such as

“ein blaues Ding” („a blue thing“) or
“Ein blaues Ding existiert.” (“A blue thing exists.”)
“Das blaue Ding existiert.” (“The blue thing exists.”)
provided that the colour slot contains “blau” (“blue”). The flexion form of the adjective depends on

· gender (looked up in the dictionary)

· number (defaulting to singular)

· case (always nominative in noun phrases in subject role)

· definiteness of the noun phrase, inferred from the used pronoun

The PrepareMeal-example may illustrate use of other objects’ descriptions:

(SuregenConcept P_PrepareMeal :is-a SuregenProcess

 :has-intern ((SP :are (P1_buyFood P2_cook P3_setTable))))

(ToDescribe :a P_PrepareMeal

:use (Sentences (DescribeS (First (my :SP)) :as :MC)

 (DescribeS (Second (my :SP)) :as :MC)

 (DescribeS (Third (my :SP)) :as :MC)))

DescribeS returns an objects’ description in the appropriate form as specified by the :as-parameter. Calling DescribeS in ToDescribe –forms effectively builds up a net (hopefully acyclic) of increasingly complex descriptions. In this way an entire medical procedure, say an appendectomy can be defined by its subprocesses such that

(DescribeS I-appendectomy :as :text)

generates the surgical report.

As mentioned earlier on, it is possible to force the description of only a certain facet of an instance to be described. How this is to be done must of course be defined previously with ToDescribe:

(ToDescribe :the colour :of-a Thing :as :MC

:use (main-clause

:subject (noun-phrase :noun “Ding”

 :pronoun :definite)

:predicate “sein”

:adverb (my :colour)))

(DescribeS I-thing :facet :colour :as :MC)

=> “Das Ding ist blau.”

(„sein“ = „to be“, „Das Ding ist blau.“= „The thing is blue“)

4. morphosyntacticals

Suregen-II provides a number of functions to build flexion forms, phrases, sentences or suprasentential structures. These include:

· pronoun-form, noun-form, verb-form, numeral-Form, adjective-form,…

· adverbial-phrase participial-phrase, noun-phrase, verb-phrase, …

· Simple-sentence, Main-clause, relative-clause, conditional-clause…

This morphosyntactical layer is completely separable in a way that it is possible to use any other surface generation formalism. However, in the design of Suregen-II it was desirable to keep this formalism as simple as possible to ensure that even users with basic knowledge of grammatical concepts are able to use it efficiently.

5. Semantic functions

A lot of work in the building of a Suregen-II application can be saved by the observation that certain constellations of instances, attributes and their respective descriptions tend to reappear. For instance, in the above “thing”-example we have realized an “attribution” or “qualification”: A certain quality (in this case “colour”) is attributed to an instance of a concept (“thing”). As attributions such as this one are quite frequent in medical documents it is worth the effort to define it only once as SemanticFunction and use it wherever necessary. A simplified version of this function (which is already defined in Suregen-II) could look like:

(SuregenNamedInstance t-attribution

SuregenSemanticFunction

:obligatory '((concept SuregenObject) (attribute T))

:templates '((:MC (Main-Clause

:subject (Noun-phrase :noun concept

 :pronoun :neutral)

:predicate (Verb-form "sein")

:adjective attribute))

 (:NP (Noun-phrase :noun concept

 :pronoun :indefinite

 :adjective attribute))))

This creates an instance, named t-attribution, with two obligatory roles (concept and attribute). Its templates-slot hold m.m. the same expressions as previously used in the ToDescribe-expressions for thing. Now it must be specified which slots of a thing fulfil which role wrt. this definition:

(SuregenConcept Thing :is-a SuregenObject

:has (colour height)

:SemanticRoles ((t-attribution

((concept (my-intern 'Description))

 (attribute (my 'colour))))))

This declares the colour slot to fill the attribute role and the description-slot, which is an internal slot to every SuregenObject to fill the concept role.

Now it is possible to specify just

(ToDescribe :a Thing

:use (DescribeS it :by t-attribution :as as))

The real definition of t-attribution is of course more complicated, mainly because there may be more than one attribute to a concept.

It must be kept in mind that this mechanism can simplify the specification in Suregen-II enourmously. There is, for instance, a SemanticFunction t‑consecutiveProcesses which, naturally enough, generates descriptions of successive processes.

It is, therefore, sufficient to define

(ToDescribe :a P_PrepareMeal

 :use (DescribeS it :by t-consecutiveProcesses :as :NP))

Note that since P_PrepareMeal is a subclass of the Suregen-II class SuregenProcess not even the definition of the semantic roles is necessary as these are already defined there.

6. Dictionary

The Dictionary of Suregen-II plays an important role. Every word which is to be used by the morphosyntactical functions has to be present in the dictionary. The function AddDictEntry accepts as parameters a string – denoting the lexeme or phrasal expression – and further information concerning the word class and inflection type. Although a (very) basic dictionary of german is present in Suregen-II there are a lot of entries, mostly nouns, to be made which a specific to the medical domain at hand. Composite nouns (which are very frequent in german) have to be declared as such.

In addition to this syntactical information it is possible to make specifications concerning the semantics and pragmatics of a lexeme: The :semanticMarkers option permits the specification of arbitrary atoms as semantic markers (in the meaning of a componential analysis) of a lexeme. This markers are used by Suregen-II to detect synonymity or antonymity which turns out to be necessary for a certain type of aggregation (“conjunction reduction”) but also for correct treatment of negations (see below).

For convenience, every concept defined via SuregenConcept may be used as semantic marker. The concept inherits semantic markers from its superclasses such that by the definition

(SuregenConcept LS_insertion

:is-a SuregenIatrogenicActionOnObject

:semanticmarkers (:sd-install))

a new (compound) semantic marker LS_insertion is defined, combining

:process, :transitive; :intended, :human-actor, :inanimate-direct-object etc.

7. Enumerative expressions

In medical documents where conciseness is of highest value there is an abundance of enumerations. The entities to be enumerated range from simple adjectives (used attributively or selectionally) to elliptic main clauses or even entire sentences. The function Enum is given one or two lists of such phrases and the type of enumeration specified by type (:neutral, :emphasize or :telegraphic) and polarity (:positive, :negative or :mixed) parameters. The output of this function varies with the grammatical type of the entities. Noun phrases, for instance, are enumerated differently from adverbials or elliptic simple sentences. Given e.g. the attributive adjectives A, B (C, D) and varying parameters for type and polarity, Enum could return:

„A und B“, „A, B und C“ , „A sowie B“, „Sowohl A als auch B und C“, „A, B, C“, „weder A, B noch C“, „weder A oder B noch C“, „nicht nur nicht A oder B, sondern auch weder C noch D“, „A, B, nicht C“, „A und B, nicht C“, „zwar A und B, nicht aber C oder D“, „zwar A aber weder B noch C oder D“,...
(“A and B“,“A, B and C”, “A as well as B”, “A as well as B and C”, “A, B, C”, “neither A, B nor C”, “neither A nor B or C”, “not only neither A nor B but also neither C nor D”, “A, B, not C”, “A and B, not C”, “A and B but not C”, “A and B but neither C nor D”,…)

Of course, generating an enumeration requires more than simply placing respective determiners between the arguments. Complications may arise from the status of negations. Considering again adjectives or adverbials these can be negated not only by using “not” but also by an “un-“ or “in-“ prefix but then the use of “neither” or “nor” is no longer correct. On the other hand, the adjectives may already carry such a negating prefix so that the negation would amount to removing it. In a similar way it can be appropriate to select the antonym (if there is any) instead of the negated form.

Another source of problems is the question which components of the phrases are to be left out in the enumeration. Consider for instance the sentence pre-form

(Main-Clause :subject (noun-phrase :noun “Schmerz”

 :pronoun :definite)

 :predicate “ausstrahlen”

 :attribute (Enum :positive :neutral

 ((noun-phrase :noun “Schulter“

 :pronoun :definite)

 (noun-phrase :noun “Arm“

 :adjective “links“

 :pronoun :definite))))

(“Schmerz”=”pain”, “ausstrahlen”=”to radiate”, “Schulter”=“shoulder“, „Arm“=arm“, „links“=“left“)

This should give:

 “Der Schmerz strahlt in die Schulter und den linken Arm aus.“

(„The pain radiates to the shoulder and the left arm.“)

On the other hand, the expression:

(Main-Clause :subject (noun-phrase :noun “Schmerz”

 :pronoun :definite)

 :predicate “ausstrahlen”

 :attribute (Enum :positive :neutral

 ((noun-phrase :noun “Hals“

 :pronoun :definite)

 (noun-phrase :noun “Schulter“

 :pronoun :definite)

 (noun-phrase :noun “Arm“

 :adjective “links“

 :pronoun :definite))))
(“Hals”=”neck”)

should result in:

“Der Schmerz strahlt in Hals, Schulter und den linken Arm aus.“

(„The pain radiates to neck, shoulder and the left arm.“)

where the all the definite pronouns but the last are removed.

8. Aggregation

Two types of aggregation are addressed in Suregen-II, “conceptual aggregation” and “conjunction reduction”.

Conceptual aggregation, which in the case of medical documents can be understood as the substitution of several expressions denoting certain entities by a single term or phrase encompassing these, cannot be done without knowledge of the discourse domain. Consider, for instance, the decision whether “sclerosis of the RCA, the LCA and the rami marginales” should be described as “global coronary sclerosis”. Although this is the most common case, conceptual aggregation does not occur only along the “part-of” relation. A “mitral regurgitation” and a “stenosis of the mitral valve” should adequately be described as “combined mitral valve disease”. Supporting this type of aggregation is a very difficult task and it is not yet realized satisfactorily in Suregen-II.

Conjunction reduction is much more a syntactical task and can be construed as merging phrases or clauses which

· are implicitly or explicitly linked with an “and”, and

· share a common expression.

“Installing a guide and installing a catheter” can thus be aggregated to “installing a guide and a catheter”.

It is important to understand that not every construct with “and” can be aggregated this way: Sometimes the “and” carries the (temporal) meaning of “and (then we did so and so)” or is used to denote causality “and (therefore it happened that)”. These connotations are much weaker or even lost in the aggregated forms. It may even be the case that the new aggregation carries another meaning, not present in the isolated expressions (that “Mick is married and Carly is married” is not equivalent to “Mick and Carly are married” is the standard example of such a case. It is therefore necessary that the user specifies (in the ToDescribe-form) whether Aggregate is to be called or not.

9. Textplan

The documents for which Suregen-II is intended typically have a fixed text plan. It was thus not necessary to develop a sophisticated text planning component. As the user selects items in the GUI even the content determination is trivially defined by the rule that every instance whose attributes are thus altered should describe itself. The only modification of this rule is the handling of normal or default values. Depending on the application domain and user preferences it can be appropriate to suppress these descriptions. Obviously, this can be done via ToDescribe.

10. An elaborated example

The following is an excerpt from a Suregen-II application for a endoscopic cholecystektomy. The concept P6_EinführenKameratrokar describes the insertion of the camera guides:

(SuregenConcept P6_EinführenKameratrokar :is-a SuregenProcess

:has-intern

((SP :are

((SuregenActionOnObject

:action "anheben"

:object "Bauchdecke"

:instrument (SuregenInstance SuregenCountableCollection

:count-of "zwei"

:membertype "Backhausklemme"))

 (SuregenActionOnObject

:action "einführen"

:object "Kameratrokar")

 (SuregenActionOnObject

:action "einbringen"

:object "Optik")))))

P6_EinführenKameratrokar is defined with three subprocesses, all of them instances of the SuregenActionOnObject-class. The first describes the lifting (“anheben”=”to lift”) of the abdominal wall (“Bauchdecke”) with two (“zwei”) clamps (“Backhausklemmen”). The second describes the insertion (“einführen”=”to insert”) of the camera guide (“Kameratrokar”) and the last subprocess represents the installation (“einbringen” = ”to install”) of the camera optics. Now

 (ToDescribe :a P6_EinführenKameratrokar

 :use (DescribeS it :by t-consecutiveProcesses :as as))

specifies that the description of an instance of P6_EinführenKameratrokar should be done using the semantic function t-consecutiveProcesses (mentioned above). The text generated by

(DescribeS I-EinführenKameratrokar :as :NP-elliptic)

reads as follows:

Anheben der Bauchdecke mit zwei Backhausklemmen, Einbringen des Kameratrokars sowie der Optik.

(„Lifting of the abdominal wall with two Backhaus-type clamps, installation of the camera guide and the optics.”)

It may be worthwhile to examine some of the intermediate results of the generation process. To keep the protocol as readable as possible some of the details have been omitted. A version with less omissions which gives more details about the annotated syntax graph formed by Constituent is in the Appendix.

Step 0:

(DescribeS I-EinführenKameratrokar :as :NP-elliptic)

Step 1:

(Sentences (DescribeS #<P6_EINFÜHRENARBEITSTROKAR @ #x2114fcd2>

:BY t-consecutiveProcesses

:AS :NP-elliptic))

The original ToDescribe form is replaced by the one defined by the semantic function t-consecutiveProcesses.
Step 2:

(GOV-CONSTITUENT

(AGGREGATION COREDAGGOBJ

(DESCRIBES #<SUREGENACTIONONOBJECT @ #x2115863a>

:BY T-HANDLING :AS :NP)))

(DESCRIBES #<SUREGENACTIONONOBJECT @ #x2115864a>

:BY T-HANDLING :AS :NP)))

(DESCRIBES #<SUREGENACTIONONOBJECT @ #x2115865a>

:BY T-HANDLING :AS :NP))))

:ELLIPSIS-NP T))

Now this definition is expanded. In order to describe a process as :NP-elliptic all descriptions of the subprocesses are generated as :NP’s and these descriptions are then aggregated by conjunction reduction (if applicable).

Step 3:

 (GOV-CONSTITUENT

(AGGREGATION COREDAGGOBJ

(NOUN-PHRASE :NOUN (MAKENOUN "anheben")

:ATTRIBUTE (NOUN-PHRASE :NOUN "Bauchdecke"

:PRONOUN:DEFINITE :CASE 2)

:SUPPLEMENT (NOUN-PHRASE

:NOUN (NOUN-PHRASE :NOUN "Backhausklemme"

:NUMERAL "zwei")

:PREPOSITION "mit"))))

(NOUN-PHRASE :NOUN (MAKENOUN "einführen")

:ATTRIBUTE (NOUN-PHRASE :NOUN "Kameratrokar"

:PRONOUN :DEFINITE :CASE 2))))

(NOUN-PHRASE :NOUN (MAKENOUN "einbringen")

:ATTRIBUTE (NOUN-PHRASE :NOUN "Optik"

 :PRONOUN :DEFINITE :CASE 2)))))

:ELLIPSIS-NP T))

The respective definitions for the subprocesses are now expanded, basically giving noun phrase expressions.

Step 4:

(CONSTITUENT ((:SYNTACTICALFORM :MCS))

(AGGREGATION COREDAGGOBJ

((CONSTITUENT "Anheben"

(CONSTITUENT "der"

 (CONSTITUENT "Bauchdecke"))

(CONSTITUENT "mit"

(CONSTITUENT "zwei"

(CONSTITUENT "Backhausklemmen")))))

 (CONSTITUENT "Einführen"))

(CONSTITUENT "des" (CONSTITUENT "Kameratrokars")))

 (CONSTITUENT "Einbringen"))

(CONSTITUENT "der"

(CONSTITUENT "Optik")))))

:ELLIPSIS-NP T))

The morphosyntacticals expressions have now generated a syntax tree where only one node (Aggregation) is not yet evaluated. This function now examines the three noun phrases and detects that the two latter can be aggregated since the heads of the noun phrases “Einführen” (“Insertion“) and “Einbringen” (“Installation”) are synonymous. Thus, the head is retained and the attributes (“des Kameratrokars”, “der Optik”) are submitted to the Enum-function. Together with the first noun phrase the resulting conjunct is then again submitted to Enum.

Step 5

(CONSTITUENT ((:SYNTACTICALFORM :MCS))

(CONSTITUENT "Anheben"

(CONSTITUENT "der"

 (CONSTITUENT "Bauchdecke"))

(CONSTITUENT "mit"

(CONSTITUENT "zwei"

(CONSTITUENT "Backhausklemmen")))))

 #\,

 (CONSTITUENT "Einbringen"))

 (CONSTITUENT "des" (CONSTITUENT "Kameratrokars")))

 "sowie"

(CONSTITUENT "der"

(CONSTITUENT "Optik"))))

Please note that the original syntax tree has to hold more information than shown above. For the detection of synonymity, for instance, the original lexemes have to be kept along with the inflected forms.

Hopefully it has become clear what Suregen-II is intended to do.

 Still a long way has to be gone, comments are welcome.

11. Appendix: the protocol with less omissions and readability

Step 0:

(DescribeS I-EinführenKameratrokar :as :NP-elliptic)

Step 1:

(Sentences (DescribeS #<P6_EINFÜHRENARBEITSTROKAR @ #x2114fcd2>

:BY t-consecutiveProcesses

:AS :NP-elliptic))
Step 2:

(GOV-CONSTITUENT ((:SYNTACTICALFORM :MCS))

 ((GOV-CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)(:SYNTACTICALROLE :MC))

 (GOV-CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

 (DESCRIBES #<SUREGENACTIONONOBJECT @ #x2115863a>

:BY T-HANDLING :AS :NP)))

 (GOV-CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)(:SYNTACTICALROLE :MC))

(GOV-CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

(DESCRIBES #<SUREGENACTIONONOBJECT @ #x2115864a>

:BY T-HANDLING :AS :NP)))

 (GOV-CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)(:SYNTACTICALROLE :MC))

(GOV-CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

(DESCRIBES #<SUREGENACTIONONOBJECT @ #x2115865a>

:BY T-HANDLING :AS :NP))))

Step 3:

 (GOV-CONSTITUENT ((:SYNTACTICALFORM :MCS))

 (AGGREGATION COREDAGGOBJ

((GOV-CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)

(:SYNTACTICALROLE :MC))

(GOV-CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

 (NOUN-PHRASE :NOUN (MAKENOUN "anheben")

:ATTRIBUTE (NOUN-PHRASE :NOUN "Bauchdecke"

:PRONOUN:DEFINITE

:CASE 2)

:SUPPLEMENT (NOUN-PHRASE

:NOUN (NOUN-PHRASE :NOUN "Backhausklemme"

:NUMERAL "zwei")

:PREPOSITION "mit"))))

(GOV-CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)

 (:SYNTACTICALROLE :MC))

 (GOV-CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

(NOUN-PHRASE :NOUN (MAKENOUN "einführen")

:ATTRIBUTE (NOUN-PHRASE :NOUN "Kameratrokar"

:PRONOUN :DEFINITE

:CASE 2))))

(GOV-CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)

 (:SYNTACTICALROLE :MC))

 (GOV-CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

(NOUN-PHRASE :NOUN (MAKENOUN "einbringen")

:ATTRIBUTE (NOUN-PHRASE :NOUN "Optik"

 :PRONOUN :DEFINITE

 :CASE 2)))))

:ELLIPSIS-NP T))

Step 4:

(CONSTITUENT ((:SYNTACTICALFORM :MCS))

(AGGREGATION COREDAGGOBJ

((CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)(:SYNTACTICALROLE :MC))

(CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

(CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:LEXEME "Anheben") (:SYNTACTICALFORM :NOUN))

"Anheben"))

(CONSTITUENT ((:SYNTACTICALROLE :ATTRIBUTE))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

"der" (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:LEXEME "Bauchdecke")

(:SYNTACTICALFORM :NOUN)) "Bauchdecke"))))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

"mit"

(CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:SYNTACTICALFORM :NOUN))

"zwei" (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:LEXEME "Backhausklemme")

(:SYNTACTICALFORM :NOUN))

"Backhausklemmen"))))))))

(CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP) (:SYNTACTICALROLE :MC))

(CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

(CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:LEXEME "Einführen") (:SYNTACTICALFORM :NOUN))

"Einführen"))

(CONSTITUENT ((:SYNTACTICALROLE :ATTRIBUTE))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

"des" (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:LEXEME "Kameratrokar")

(:SYNTACTICALFORM :NOUN))

"Kameratrokars")))))))

(CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP)(:SYNTACTICALROLE :MC))

(CONSTITUENT ((:SYNTACTICALROLE :SUBJECT))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

(CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:LEXEME "Einbringen")(:SYNTACTICALFORM :NOUN))

"Einbringen"))

(CONSTITUENT ((:SYNTACTICALROLE :ATTRIBUTE))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

"der"

(CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD))

(CONSTITUENT ((:LEXEME "Optik")(:SYNTACTICALFORM :NOUN))

"Optik"))))))))

:ELLIPSIS-NP T)

 (CONSTITUENT ((:SYNTACTICALROLE :SENTENCE-BORDER)) #\.)))

Step 5

(CONSTITUENT ((:SYNTACTICALFORM :MCS))

 (CONSTITUENT :NOSPEC

 (CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP) (:SYNTACTICALROLE :MC))

 (CONSTITUENT ((:SYNTACTICALROLE :SUBJECT) (:SYNTACTICALFORM :NP))

 (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD)

(:LEXEME "Anheben")(:SYNTACTICALFORM :NOUN))

 "Anheben")

 (CONSTITUENT ((:SYNTACTICALFORM :NP)

(:SYNTACTICALROLE :ATTRIBUTE))

 "der"

 (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD)

(:LEXEME "Bauchdecke") (:SYNTACTICALFORM :NOUN))

 "Bauchdecke"))

(CONSTITUENT ((:SYNTACTICALFORM :NP))

"mit"

(CONSTITUENT ((:SYNTACTICALFORM :NOUN)

(:SYNTACTICALROLE :NP-HEAD))

 "zwei"

 (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD)

(:LEXEME "Backhausklemme")(:SYNTACTICALFORM :NOUN))

 "Backhausklemmen"))))

 #\,

 (CONSTITUENT ((:SYNTACTICALFORM :ELLIPSIS-NP) (:SYNTACTICALROLE :MC))

 (CONSTITUENT ((:SYNTACTICALROLE :SUBJECT) (:SYNTACTICALFORM :NP))

 (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD)

(:LEXEME "Einbringen") (:SYNTACTICALFORM :NOUN))

 "Einbringen")

 (CONSTITUENT :NOSPEC

 (CONSTITUENT ((:SYNTACTICALFORM :NP)

(:SYNTACTICALROLE :ATTRIBUTE))

 "der"

(CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD)

(:LEXEME "Optik")(:SYNTACTICALFORM :NOUN))

 "Optik"))

 "sowie"

 (CONSTITUENT ((:SYNTACTICALFORM :NP)

(:SYNTACTICALROLE :ATTRIBUTE))

 "des"

 (CONSTITUENT ((:SYNTACTICALROLE :NP-HEAD)

(:LEXEME "Kameratrokar")(:SYNTACTICALFORM :NOUN))

 "Kameratrokars"))))))))

